Рулетка - теория вероятности Roulette in English      
Рулетка - теория вероятности

Рулетка

Системы игры в рулетку

Казино и все о нем

Игры в казино

Азартные игры




Рулетка - теория вероятности.

Множество людей начиная играть в рулетку, вспоминают о том, что они когда-то слышали о теории вероятности.
К сожалению, вся эта "теория вероятности" не поможет при игре в рулетку, а только причинит вред.
Обратимся к теории вероятности.
"Теория вероятностей изучает случайные события. Каждому случайному событию приписывается число, которое называется его вероятностью. Это число характеризует шансы, что событие произойдет. Если неограниченно увеличивать число повторений опыта, то относительная частота появления события будет устойчиво к некоторой фиксированной величине и отклоняться от нее тем меньше и реже, чем больше количество опытов. Эта величина и является вероятностью события."

Приведеная выше цитата взята из учебника по теории вероятности, просто были выкинуты формулы.
Что из этого следует - только то, что использовать вероятности можно при неограниченном увеличении числа повторений опыта. Когда же мы играем в рулетку, мы имеем достаточно ограниченное число повторений опыта (вращений колеса рулетки). Для неограниченном увеличении числа опытов, у нас нет в запасе неограниченного количества денег и времени.
Видимо, для того, чтобы больше запутать игроков в рулетку, математики придумали так называемую "условную вероятность."

"Условная вероятность оценивает шансы осуществления события А, когда известно, что произошло событие В. Условная вероятность вычисляется по формуле Р(А?В) =Р(A)·P(B)."

Давайте рассмотрим на примере, что будет, если мы попробуем использовать вышеприведенную формулу.
Рассчитаем вероятность выпадения подряд пяти простых шансов (например подряд 5 КРАСНОЕ).
Мы имеем 5 независимых событий ("шарик памяти не имеет"), вероятность каждого из которых 18/37 = 0,49. Вероятность серии из 5 КРАСНОЕ = 0,49 * 0,49 * 0,49 * 0,49 * 0,49 = 0,03. Ага, вероятность маленькая, значит нужно играть против такой вероятности, и мы выиграем. Только как играть? Пять раз ставить на ЧЕРНОЕ? Но серия из пяти выпадений на ЧЕРНОЕ имеет туже вероятность, что и серия из пяти на КРАСНОЕ.
Хорошо, будем ждать серию из четырех выпеданий на КРАСНОЕ, и потом поставим на ЧЕРНОЕ. Мы ведь помним, что вероятность из 5 выпадений на КРАСНОЕ подряд очень мала.
Крутим рулетку и наконец КРАСНОЕ, КРАСНОЕ,КРАСНОЕ,КРАСНОЕ...
Вот настал момент, когда нужно ставить на ЧЕРНОЕ. Но вероятность выпадения ЧЕРНОГО не изменилась - шарик памяти не имеет. Все наши расчеты и ожидания были впустую.
На подобную "теорию вероятности" накладывается еще и особенности физиологии человека. Исследователи Вильям Геринг и Адриан Вилоуфбай из университета Мичигана обнаружили, что проигрыш задействует часть мозговой зоны восприятия эмоций. Эта зона является детектором всего негативного, причем размер потери не имеет значения, а выигрыш ее не затрагивает. Однако мозг учитывает предыдущий опыт. Серия потерь вызывает более сильную реакцию - как будто "детектор потерь" утверждается в представлении о несправедливости. Эта реакция отражает ошибочное представление игрока о том, что следующий раз на рулетке выпадет черное только потому, что перед этим было красное 4 раза подряд.
"Мозг полагает, что он обязан выиграть - он ожидает, что все всегда приходит к среднему значению", - предположил Геринг.
Конечно виновата не теория вероятности, а ее неправильное применение. Теория вероятности - матиматическая наука, она оперирует на просторах неограниченного повторения опытов. Но она не дает ответа в простых и конкретных ситуациях. Если рассматривать рулетку теоретически, преимущество 5.26% (колесо с двумя зеро) или 2.7% (с одним зеро) от сделанных ставок. Это преимущество делает рулетку теоретически проигрышной игрой.
На самом деле, рулетка - игра с удачей, и игрок имеет шанс выиграть.
Если бы не имелось никакого преимущества казино, и не было бы зеро, тогда результат игры был бы нулевым? (Теоретически это так) Нет, Вы бы все равно выиграли или проиграли намного больше чем 2.703%.
Не нужно бросать вызов математическому преимуществу казино. Вы не можете устранить или изменить это преимущество. Если Вы хотите сделать это - Вы будете медленно, но верно терять деньги. Математическое преимущество казино - это относительно маленькие суммы денег, которые могут быть очень быстро выиграны или проиграны. Думайте об этом, как о неприятном, но приемлемом налоге или платеже казино за использование игрового оборудования. Помните, Вы оплачиваете математическое преимущество казино, только когда Вы выигрываете.



Казино хочет, чтобы Вы играли вечно, потому что, в конечном счете, казино имеет преимущество.
Ваша цель - выиграть большее количество денег за меньшее количество спинов и иметь четкие критерии, когда следует остановится. Выиграть большее количество денег за меньшее количество спинов, Вам поможет хорошая система игры в рулетку, а определить критерии, когда следует остановится - финансовое планирование.


ђг«ҐвЄ 
© 2005 Рулетка - онлайн рулетка, правила и системы игры в рулетку.
Игры для компьютера и приставок